Олимпиада по математике 5 класс с решением

Олимпиадные задания с решением по математике для 5 класса


Задача № 1.

Выразите числа 5, 30 и 55, используя четыре цифры 5, знаки арифметических действий и скобки.

Задача № 2.

В гимназии 33 учебных кабинета, в 2/3 кабинетах стоят по 12 парт, в остальных по 13.
Около каждой парты стоит по 2 стула. 50% всех стульев имеют по 3 ножки, остальные по 4.
Каждая парта, кроме 7, имеет по 4 ножки, а эти 7 парт по 6.
Столько всего ножек у парт и стульев в учебных кабинетах гимназии?

Задача № 3.

Нюша , Бараш, Копатыч и Лосяш играли с мячами синим, зелёным, жёлтым и красным.
Каким из мячей играл каждый из них, если мяч Бараша не синий, у Нюши не синий и не красный, а у Копатыча желтый мяч?

Задача № 4.

В сказочном озере плавает сказочная лилия. Эта лилия за сутки вдвое увеличивает свои размеры и полностью заполняет озеро за 137 суток.
За какое время заполнят озеро две сказочные лилии?

Задача № 5.

Задуманное число добавили к числу, большему его на единицу.
Затем из суммы вычли число, на единицу меньшее задуманного.
В итоге получилось 23. Какое число было задумано?

Задача № 6.

Какое наименьшее 10-значное число можно получить, по-разному записывая
шесть чисел 315, 41, 6, 7, 63 и 2 одно за другим?

Задача № 7.

Две бутылки A и B заполнены водой. Сначала 1/4 воды из A перелили в B , а затем 1/3 воды из B перелили в A, после чего количество воды в них сравнялось.
Найдите первоначальное отношение количества воды в этих бутылках.

Задача № 8.

В некотором месяце три воскресенья пришлись на чётные числа.
Каким днём недели могло быть 22 число этого месяца?

Задача № 9.

Оттолкнувшись левой ногой, Кенгуру прыгает на 2 метра, правой – на 4, а обеими – на 7.
Какое наименьшее число таких прыжков нужно сделать, чтобы набрать в точности 300 метров?

Задача № 10.

Найдите натуральное число N , для которого N+53 и N-36 –полные квадраты.

Задача № 11.

Из квадрата со стороной 100 вырезали квадрат со стороной 80. Оставшийся кусок разрезали на единичные квадратики (это можно сделать), из которых Павел хочет сложить новый квадрат. Чему будет равна его сторона?

Задача № 12.

Девочка заменила каждую букву в своём имени её номером в русском алфавите
и получила 2011533.
Как её зовут?

Задача № 13.

В букете 11 цветов, причём 5 из них – красные, а 6 – розы.
Какое число белых гвоздик может быть в букете?

Задача № 14.

Какое наименьшее 10-значное число можно получить, по-разному записывая шесть чисел 316, 21, 6, 7, 83 и 3 одно за другим?

Задача № 15.

В некотором месяце три понедельника пришлись на нечётные числа.
Каким днём недели могло быть 21 число этого месяца?

Задача № 16.

Оттолкнувшись левой ногой, Заяц прыгает на 40 сантиметров, правой – на 50, а обеими – на 95. Какое наименьшее число таких прыжков нужно сделать, чтобы набрать в точности 300 метров?

Задача № 17.

Из квадрата со стороной 100 тетрадных клеточек вырезали квадрат со стороной 80.
Оставшийся кусок разрезали на единичные квадратики (это можно сделать),
из которых Андрей хочет сложить новый квадрат.
Чему будет равна его сторона?

Задача № 18.

Вычислите: 1.    180*94-47700:45+4946       2.    86 * 170 - 5793 + 72800 : 35

Задача № 19.

Найдите объём прямоугольного параллелепипеда, измерения которого равны 4м, 3м и 5м.

Задача № 20.

Найдите площадь поверхности и объём куба, ребро которого равно 6дм.
Во сколько раз уменьшится площадь поверхности и во сколько раз – объём куба,
если его ребро уменьшить вдвое?



Олимпиадные задания по математике для 5 класса с решением




Задача 1 :

На книжной полке можно разместить либо 25 одинаковых толстых книг, либо 45 тонких книг.
Можно ли разместить на этой полке 20 толстых книг и 9 тонких книг?

Решение :

Заметим, что и 25 и 45 делятся на 5
25 : 5 = 5(к) толстых
45 : 5 = 9 (к) тонких.
Обратим внимание на то, что 5 толстых книг занимает столько же места сколько 9 тонких.
Вывод: на 20 толстых книг и 9 тонких - места хватит.

Задача 2 :

Имеются двое песочных часов: на 3 минуты и на 7 минут.
Яйцо варится 11 минут. Как отмерить это время при помощи имеющихся часов?

Решение :

Перевернуть обои часы. Когда пройдёт 3 минуты в семиминутных часах останется 4 минуты.
Поставьте яйца в это время вариться.
Когда 4 минуты закончатся, перевернуть семиминутные часы обратно 4 + 7 + 11 мин.

Задача 3 :

В ящике лежат шары: 5 красных, 7 синих и 1 зелёный.
Сколько шаров надо вынуть, чтобы достать два шара одного цвета?

Решение :

подумайте сколько всего шаров различных цветов можно достать не повторяясь
Ответ: надо вынуть 4 шара.

Задача 4 :

Известно, что P - 2 = Q + 2 = X - 3 = Y + 4 = Z - 5.
Найти самое маленькое из них.

Решение :

В каждом случае Р уменьшили на 2, чтобы сравнять с остальными числами и т.д. В ходе дальнейших рассуждений видим, что Y увеличили на 4, т.е. оно было самым маленьким.

Задача 5 :

Двум парам молодоженов нужно переправиться на другой берег.
Для этого имеется двуместная лодка, но сложность состоит в том, что молодые жены отказались оставаться в обществе незнакомого мужчины без своего мужа.
Как осуществить переправу всех четверых, соблюдая это условие?

Решение :

М1   М2
М1
Ж1   Ж2
Ж1
М1   Ж1
Ответ: за 5 переездов.



Задача 6.


У филателиста Васи большое количество марок.
Однажды он решил разместить их в большом альбоме, состоящем из 1000 страниц, так, чтобы на всех заполненных страницах марок было поровну (какие-то страницы в конце альбома могут остаться пустыми).
Но когда Боря попробовал раскладывать по 7 марок на странице, то у него 5 марок осталось (но не все страницы были заполнены).
Тогда он стал раскладывать сначала по 11 марок на странице, затем – по 13 марок на странице.
Но снова у него оба раза осталось 5 марок.
Наконец, когда Боря решил разложить по 23 марки на странице, то на этот раз у него осталось 6 марок.
Сколько марок в коллекции у Васи?



Решение задачи.


Пусть у Васи х марок.
Согласно условию х – 5 делится на 7, на 11 и на 13.
Следовательно, поскольку
7, 11 и 13 – простые числа,
то х – 5 делится на их произведение,
т. е. на 7 • 11 • 13 = 1001.
Поэтому х – 5 = 1001k для некоторого натурального k, откуда х = 1001k + 5 .
Далее, согласно условию х – 6 делится на 23.
Поэтому х – 6 = 23m для некоторого натурального m.
В результате, получим 1001k – 1 = 23m.
Остается только найти натуральные k и m, удовлетворяющие этому равенству.
При этом, поскольку согласно условию
х/7 < 1000 и, значит, х < 7000,
то достаточно рассмотреть k = 1, 2, ..., 6.
Нетрудно убедиться, что только при k = 2
из уравнения получится натуральное значение
m = 87.
Поэтому находим единственное значение
х = 1001 • 2 + 5 = 2007.


Задания олимпиады по математике с решением в 5 классе


--------------------------------------------------------------

Олимпиада по математике 6 класс

Олимпиада по математике 7 класс

Олимпиада по математике 8 класс

Олимпиада по математике 9 класс

Олимпиада по математике 10 класс

Олимпиада по математике 11 класс

Олимпиада по математике для студентов 1 курса

Олимпиада по математике для студентов 2 курса



Н а в е р х